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Abstract. We propose a deep learning method for single image super-
resolution (SR). Our method directly learns an end-to-end mapping be-
tween the low/high-resolution images. The mapping is represented as
a deep convolutional neural network (CNN) [15] that takes the low-
resolution image as the input and outputs the high-resolution one. We
further show that traditional sparse-coding-based SR methods can also
be viewed as a deep convolutional network. But unlike traditional meth-
ods that handle each component separately, our method jointly optimizes
all layers. Our deep CNN has a lightweight structure, yet demonstrates
state-of-the-art restoration quality, and achieves fast speed for practical
on-line usage.

Keywords: Super-resolution, deep convolutional neural networks.

1 Introduction

Single image super-resolution (SR) [11] is a classical problem in computer vision.
Recent state-of-the-art methods for single image super-resolution are mostly
example-based. These methods either exploit internal similarities of the same im-
age [7,10,23], or learn mapping functions from external low- and high-resolution
exemplar pairs [2,4,9,13,20,24,25,26,28]. The external example-based methods
are often provided with abundant samples, but are challenged by the difficulties
of effectively and compactly modeling the data.

The sparse-coding-based method [25,26] is one of the representative meth-
ods for external example-based image super-resolution. This method involves
several steps in its pipeline. First, overlapping patches are densely extracted
from the image and pre-processed (e.g., subtracting mean). These patches are
then encoded by a low-resolution dictionary. The sparse coefficients are passed
into a high-resolution dictionary for reconstructing high-resolution patches. The
overlapping reconstructed patches are aggregated (or averaged) to produce the
output. Previous SR methods pay particular attention to learning and optimiz-
ing the dictionaries [25,26] or alternative ways of modeling them [4,2]. However,
the rest of the steps in the pipeline have been rarely optimized or considered in
an unified optimization framework.

In this paper, we show the aforementioned pipeline is equivalent to a deep
convolutional neural network [15] (more details in Section 3.2). Motivated by
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Fig. 1. The proposed Super-Resolution Convolutional Neural Network (SRCNN) sur-
passes the bicubic baseline with just a few training iterations, and outperforms the
sparse-coding-based method (SC) [26] with moderate training. The performance may
be further improved with more training iterations. More details are provided in Sec-
tion 4.1 (the Set5 dataset with an upscaling factor 3). The proposed method provides
visually appealing reconstruction from the low-resolution image.

this fact, we directly consider a convolutional neural network which is an end-
to-end mapping between low- and high-resolution images. Our method differs
fundamentally from existing external example-based approaches, in that ours
does not explicitly learn the dictionaries [20,25,26] or manifolds [2,4] for modeling
the patch space. These are implicitly achieved via hidden layers. Furthermore,
the patch extraction and aggregation are also formulated as convolutional layers,
so are involved in the optimization. In our method, the entire SR pipeline is fully
obtained through learning, with little pre/post-processing.

We name the proposed model Super-Resolution Convolutional Neural Net-
work (SRCNN)1. The proposed SRCNN has several appealing properties. First,
its structure is intentionally designed with simplicity in mind, and yet provides
superior accuracy2 comparing with state-of-the-art example-based methods. Fig-
ure 1 shows a comparison on an example. Second, with moderate numbers of
filters and layers, our method achieves fast speed for practical on-line usage even
on a CPU. Our method is faster than a series of example-based methods, because

1 The implementation is available at
http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html .

2 Numerical evaluations in terms of Peak Signal-to-Noise Ratio (PSNR) when the
ground truth images are available.

http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
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it is fully feed-forward and does not need to solve any optimization problem on
usage. Third, experiments show that the restoration quality of the network can
be further improved when (i) larger datasets are available, and/or (ii) a larger
model is used. On the contrary, larger datasets/models can present challenges
for existing example-based methods.

Overall, the contributions of this work are mainly in three aspects:

1. We present a convolutional neural network for image super-resolution. The
network directly learns an end-to-end mapping between low- and high-
resolution images, with little pre/post-processing beyond the optimization.

2. We establish a relationship between our deep-learning-based SR method and
the traditional sparse-coding-based SR methods. This relationship provides
a guidance for the design of the network structure.

3. We demonstrate that deep learning is useful in the classical computer vision
problem of super-resolution, and can achieve good quality and speed.

2 Related Work

Image Super-Resolution. A category of state-of-the-art SR approaches
[9,4,25,26,24,2,28,20] learn a mapping between low/high-resolution patches.
These studies vary on how to learn a compact dictionary or manifold space to
relate low/high-resolution patches, and on how representation schemes can be
conducted in such spaces. In the pioneer work of Freeman et al. [8], the dictio-
naries are directly presented as low/high-resolution patch pairs, and the nearest
neighbour (NN) of the input patch is found in the low-resolution space, with
its corresponding high-resolution patch used for reconstruction. Chang et al. [4]
introduce a manifold embedding technique as an alternative to the NN strat-
egy. In Yang et al.’s work [25,26], the above NN correspondence advances to a
more sophisticated sparse coding formulation. This sparse-coding-based method
and its several improvements [24,20] are among the state-of-the-art SR methods
nowadays. In these methods, the patches are the focus of the optimization; the
patch extraction and aggregation steps are considered as pre/post-processing
and handled separately.

Convolutional Neural Networks. Convolutional neural networks (CNN)
date back decades [15] and have recently shown an explosive popularity par-
tially due to its success in image classification [14]. Several factors are of central
importance in this progress: (i) the efficient training implementation on modern
powerful GPUs [14], (ii) the proposal of the Rectified Linear Unit (ReLU) [18]
which makes convergence much faster while still presents good quality [14], and
(iii) the easy access to an abundance of data (like ImageNet [5]) for training
larger models. Our method also benefits from these progresses.

Deep Learning for Image Restoration. There have been a few studies of
using deep learning techniques for image restoration. The multi-layer percep-
tron (MLP), whose all layers are fully-connected (in contrast to convolutional),
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is applied for natural image denoising [3] and post-deblurring denoising [19].
More closely related to our work, the convolutional neural network is applied
for natural image denoising [12] and removing noisy patterns (dirt/rain) [6].
These restoration problems are more or less denoising-driven. On the contrary,
the image super-resolution problem has not witnessed the usage of deep learning
techniques to the best of our knowledge.

3 Convolutional Neural Networks for Super-Resolution

3.1 Formulation

Consider a single low-resolution image. We first upscale it to the desired size
using bicubic interpolation, which is the only pre-processing we perform3. Denote
the interpolated image asY. Our goal is to recover from Y an image F (Y) which
is as similar as possible to the ground truth high-resolution image X. For the
ease of presentation, we still call Y a “low-resolution” image, although it has
the same size as X. We wish to learn a mapping F , which conceptually consists
of three operations:

1. Patch extraction and representation: this operation extracts (overlap-
ping) patches from the low-resolution image Y and represents each patch as
a high-dimensional vector. These vectors comprise a set of feature maps, of
which the number equals to the dimensionality of the vectors.

2. Non-linear mapping: this operation nonlinearly maps each high-
dimensional vector onto another high-dimensional vector. Each mapped vec-
tor is conceptually the representation of a high-resolution patch. These vec-
tors comprise another set of feature maps.

3. Reconstruction: this operation aggregates the above high-resolution patch-
wise representations to generate the final high-resolution image. This image
is expected to be similar to the ground truth X.

We will show that all these operations form a convolutional neural network. An
overview of the network is depicted in Figure 2. Next we detail our definition of
each operation.

Patch Extraction and Representation. A popular strategy in image restora-
tion (e.g., [1]) is to densely extract patches and then represent them by a set of
pre-trained bases such as PCA, DCT, Haar, etc. This is equivalent to convolving
the image by a set of filters, each of which is a basis. In our formulation, we
involve the optimization of these bases into the optimization of the network.
Formally, our first layer is expressed as an operation F1:

F1(Y) = max (0,W1 ∗Y +B1) , (1)

3 Actually, bicubic interpolation is also a convolutional operation, so can be formulated
as a convolutional layer. However, the output size of this layer is larger than the input
size, so there is a fractional stride. To take advantage of the popular well-optimized
implementations such as convnet [14], we exclude this “layer” from learning.
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Fig. 2. Given a low-resolution image Y, the first convolutional layer of the SRCNN
extracts a set of feature maps. The second layer maps these feature maps nonlinearly to
high-resolution patch representations. The last layer combines the predictions within
a spatial neighbourhood to produce the final high-resolution image F (Y).

where W1 and B1 represent the filters and biases respectively. Here W1 is of a
size c× f1 × f1 ×n1, where c is the number of channels in the input image, f1 is
the spatial size of a filter, and n1 is the number of filters. Intuitively, W1 applies
n1 convolutions on the image, and each convolution has a kernel size c× f1× f1.
The output is composed of n1 feature maps. B1 is an n1-dimensional vector,
whose each element is associated with a filter. We apply the Rectified Linear
Unit (ReLU, max(0, x)) [18] on the filter responses4.

Non-linear Mapping. The first layer extracts an n1-dimensional feature for
each patch. In the second operation, we map each of these n1-dimensional vectors
into an n2-dimensional one. This is equivalent to applying n2 filters which have
a trivial spatial support 1×1. The operation of the second layer is:

F2(Y) = max (0,W2 ∗ F1(Y) + B2) . (2)

Here W2 is of a size n1×1×1×n2, and B2 is n2-dimensional. Each of the output
n2-dimensional vectors is conceptually a representation of a high-resolution patch
that will be used for reconstruction.

It is possible to add more convolutional layers (whose spatial supports are 1×
1) to increase the non-linearity. But this can significantly increase the complexity
of the model, and thus demands more training data and time. In this paper, we
choose to use a single convolutional layer in this operation, because it has already
provided compelling quality.

4 The ReLU can be equivalently considered as a part of the second operation (Non-
linear mapping), and the first operation (Patch extraction and representation) be-
comes purely linear convolution.
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Fig. 3. An illustration of sparse-coding-based methods in the view of a convolutional
neural network

Reconstruction. In the traditional methods, the predicted overlapping high-
resolution patches are often averaged to produce the final full image. The averag-
ing can be considered as a pre-defined filter on a set of feature maps (where each
position is the “flattened” vector form of a high-resolution patch). Motivated by
this, we define a convolutional layer to produce the final high-resolution image:

F (Y) = W3 ∗ F2(Y) +B3. (3)

Here W3 is of a size n2 × f3 × f3 × c, and B3 is a c-dimensional vector.
If the representations of the high-resolution patches are in the image domain

(i.e., we can simply reshape each representation to form the patch), we expect
that the filters act like an averaging filter; if the representations of the high-
resolution patches are in some other domains (e.g., coefficients in terms of some
bases), we expect that W3 behaves like first projecting the coefficients onto the
image domain and then averaging. In either way, W3 is a set of linear filters.

Interestingly, although the above three operations are motivated by different
intuitions, they all lead to the same form as a convolutional layer. We put all
three operations together and form a convolutional neural network (Figure 2).
In this model, all the filtering weights and biases are to be optimized.

Despite the succinctness of the overall structure, our SRCNN model is care-
fully developed by drawing extensive experience resulted from significant pro-
gresses in super-resolution [25,26]. We detail the relationship in the next section.

3.2 Relationship to Sparse-Coding-Based Methods

We show that the sparse-coding-based SR methods [25,26] can be viewed as a
convolutional neural network. Figure 3 shows an illustration.

In the sparse-coding-based methods, let us consider that an f1 × f1 low-
resolution patch is extracted from the input image. This patch is subtracted
by its mean, and then is projected onto a (low-resolution) dictionary. If the
dictionary size is n1, this is equivalent to applying n1 linear filters (f1 × f1)
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on the input image (the mean subtraction is also a linear operation so can be
absorbed). This is illustrated as the left part of Figure 3.

A sparse coding solver will then be applied on the projected n1 coefficients
(e.g., see the Feature-Sign solver [17]). The outputs of this solver are n2 coeffi-
cients, and usually n2 = n1 in the case of sparse coding. These n2 coefficients are
the representation of the high-resolution patch. In this sense, the sparse coding
solver behaves as a non-linear mapping operator. See the middle part of Figure 3.
However, the sparse coding solver is not feed-forward, i.e., it is an iterative algo-
rithm. On the contrary, our non-linear operator is fully feed-forward and can be
computed efficiently. Our non-linear operator can be considered as a pixel-wise
fully-connected layer.

The above n2 coefficients (after sparse coding) are then projected onto another
(high-resolution) dictionary to produce a high-resolution patch. The overlapping
high-resolution patches are then averaged. As discussed above, this is equivalent
to linear convolutions on the n2 feature maps. If the high-resolution patches used
for reconstruction are of size f3 × f3, then the linear filters have an equivalent
spatial support of size f3 × f3. See the right part of Figure 3.

The above discussion shows that the sparse-coding-based SR method can be
viewed as a kind of convolutional neural network (with a different non-linear
mapping). But not all operations have been considered in the optimization in
the sparse-coding-based SR methods. On the contrary, in our convolutional neu-
ral network, the low-resolution dictionary, high-resolution dictionary, non-linear
mapping, together with mean subtraction and averaging, are all involved in the
filters to be optimized. So our method optimizes an end-to-end mapping that
consists of all operations.

The above analogy can also help us to design hyper-parameters. For example,
we can set the filter size of the last layer to be smaller than that of the first
layer, and thus we rely more on the central part of the high-resolution patch (to
the extreme, if f3 = 1, we are using the center pixel with no averaging). We can
also set n2 < n1 because it is expected to be sparser. A typical setting is f1 = 9,
f3 = 5, n1 = 64, and n2 = 32 (we evaluate more settings in the experiment
section).

3.3 Loss Function

Learning the end-to-end mapping function F requires the estimation of parame-
ters Θ = {W1,W2,W3, B1, B2, B3}. This is achieved through minimizing the loss
between the reconstructed images F (Y;Θ) and the corresponding ground truth
high-resolution images X. Given a set of high-resolution images {Xi} and their
corresponding low-resolution images {Yi}, we use Mean Squared Error (MSE)
as the loss function:

L(Θ) =
1

n

n∑

i=1

||F (Yi;Θ) −Xi||
2, (4)

where n is the number of training samples. The loss is minimized using stochastic
gradient descent with the standard backpropagation [16].
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Using MSE as the loss function favors a high PSNR. The PSNR is a widely-
used metric for quantitatively evaluating image restoration quality, and is at least
partially related to the perceptual quality. It is worth noticing that the convolu-
tional neural networks do not preclude the usage of other kinds of loss functions,
if only the loss functions are derivable. If a better perceptually motivated metric
is given during training, it is flexible for the network to adapt to that metric.
We will study this issue in the future. On the contrary, such a flexibility is in
general difficult to achieve for traditional “hand-crafted” methods.

4 Experiments

Datasets. For a fair comparison with traditional example-based methods, we
use the same training set, test sets, and protocols as in [20]. Specifically, the
training set consists of 91 images. The Set5 [2] (5 images) is used to evaluate
the performance of upscaling factors 2, 3, and 4, and Set14 [28] (14 images) is
used to evaluate the upscaling factor 3. In addition to the 91-image training set,
we also investigate a larger training set in Section 5.2.

Comparisons. We compare our SRCNN with the state-of-the-art SR meth-
ods: the SC (sparse coding) method of Yang et al. [26], the K-SVD-based
method [28], NE+LLE (neighbour embedding + locally linear embedding) [4],
NE+NNLS (neighbour embedding + non-negative least squares) [2], and the
ANR (Anchored Neighbourhood Regression) method [20]. The implementations
are all from the publicly available codes provided by the authors. For our imple-
mentation, the training is implemented using the cuda-convnet package [14].

Implementation Details. As per Section 3.2, we set f1 = 9, f3 = 5, n1 = 64
and n2 = 32 in our main evaluations. We will evaluate alternative settings in
the Section 5. For each upscaling factor ∈ {2, 3, 4}, we train a specific network
for that factor5.

In the training phase, the ground truth images {Xi} are prepared as 32× 32-
pixel6 sub-images randomly cropped from the training images. By “sub-images”
we mean these samples are treated as small “images” rather than “patches”, in
the sense that “patches” are overlapping and require some averaging as post-
processing but “sub-images” need not. To synthesize the low-resolution samples
{Yi}, we blur a sub-image by a proper Gaussian kernel, sub-sample it by the
upscaling factor, and upscale it by the same factor via bicubic interpolation.
The 91 training images provide roughly 24,800 sub-images. The sub-images are
extracted from original images with a stride of 14. We attempted smaller strides
but did not observe significant performance improvement. From our observation,
the training set is sufficient to train the proposed deep network. The training
(8× 108 backpropagations) takes roughly three days, on a GTX 770 GPU.

5 In the area of denoising [3], for each noise level a specific network is trained.
6 The input size is 33× 33 for an upscaling factor 3, so can be divided by 3.
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Following [20], we only consider the luminance channel (in YCrCb color space)
in our experiments, so c = 1 in the first/last layer. The two chrominance chan-
nels are bicubic upsampled only for the purpose of displaying, but not for train-
ing/testing. Note that our method can be extended to directly training on color
images by setting c = 3. We use c = 1 in this paper mainly for fair comparison
with previous methods, as most of them only concern the luminance channels.

To avoid border effects during training, all the convolutional layers have no
padding, and the network produces a smaller output (20 × 20). The MSE loss
function is evaluated only by the difference between the central 20× 20 crop of
Xi and the network output. In processing test images, the convolutional neural
network can be applied on images of arbitrary sizes. All the convolutional layers
are given sufficient zero-padding during testing, so that the output image is of
the same size as the input. To address the border effects, in each convolutional
layer, the output (before ReLU) at each pixel is normalized by the number of
valid input pixels, which can be computed beforehand.

The filter weights of each layer are initialized by drawing randomly from a
Gaussian distribution with zero mean and standard deviation 0.001 (and 0 for
biases). The learning rate is 10−4 for the first two layers, and 10−5 for the
last layer. We empirically find that a smaller learning rate in the last layer is
important for the network to converge (similar to the denoising case [12]).

4.1 Quantitative Evaluation

As shown in Tables 1 and 2, the proposed SRCNN yields the highest average
PSNR in all experiments. Note that our SRCNN results are based on the check-
point of 8 × 108 backpropagations. Specifically, as shown in the Table 1 (Set5),
the average gains achieved by SRCNN are 0.51 dB, 0.47 dB, and 0.40 dB, higher
than the next best approach, ANR [20], on all the three upscaling factors. We
note that Set5 may not be a conclusive test set due to the limited number of
test samples, but the results are indicative that the proposed model can handle
different upscaling factors well. On the larger Set14 dataset, our SRCNN consis-
tently outperforms other methods by a large margin (≥ 0.3 dB on average). A
similar trend is observed when we used SSIM [22,21] as the performance metric,
the results of which could be found in the supplementary file. It is worth point-
ing out that SRCNN surpasses the bicubic baseline at the very beginning of the
learning stage (see Figure 1), and with moderate training, SRCNN outperforms
existing state-of-the-art methods (see Figure 6). Yet, the performance is far from
converge. We conjecture that better results can be obtained given longer training
time (see Figure 6). In Section 5.2, we will show that our method also benefits
from more training data.

Figures 7, 8 and 9 show the super-resolution results of different approaches by
an upscaling factor 3. As can be observed, the SRCNN produces much sharper
edges than other approaches without any obvious artifacts across the image. In
spite of the best average PSNR values, the proposed SRCNN does not achieve
the highest PSNR on images “baby” and “head” from Set5. Nevertheless, our
results are still visually appealing (see Figure 10).
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Table 1. The results of PSNR (dB) and test time (sec) on the Set5 dataset

Set5 [2] Bicubic SC [26] K-SVD [28] NE+NNLS [2] NE+LLE [4] ANR [20] SRCNN
images Scale PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

baby 2 37.07 - - - 38.25 7.0 38.00 68.6 38.33 13.6 38.44 2.1 38.30 0.38
bird 2 36.81 - - - 39.93 2.2 39.41 22.5 40.00 4.2 40.04 0.62 40.64 0.14

butterfly 2 27.43 - - - 30.65 1.8 30.03 16.6 30.38 3.3 30.48 0.50 32.20 0.10
head 2 34.86 - - - 35.59 2.1 35.48 19.2 35.63 3.8 35.66 0.57 35.64 0.13

woman 2 32.14 - - - 34.49 2.1 34.24 19.3 34.52 3.8 34.55 0.57 34.94 0.13

average 2 33.66 - - - 35.78 3.03 35.43 29.23 35.77 5.74 35.83 0.87 36.34 0.18

baby 3 33.91 - 34.29 76.0 35.08 3.3 34.77 28.3 35.06 6.0 35.13 1.3 35.01 0.38
bird 3 32.58 - 34.11 30.4 34.57 1.0 34.26 8.9 34.56 1.9 34.60 0.39 34.91 0.14

butterfly 3 24.04 - 25.58 26.8 25.94 0.81 25.61 7.0 25.75 1.4 25.90 0.31 27.58 0.10
head 3 32.88 - 33.17 21.3 33.56 1.0 33.45 8.2 33.60 1.7 33.63 0.35 33.55 0.13

woman 3 28.56 - 29.94 25.1 30.37 1.0 29.89 8.7 30.22 1.9 30.33 0.37 30.92 0.13

average 3 30.39 - 31.42 35.92 31.90 1.42 31.60 12.21 31.84 2.58 31.92 0.54 32.39 0.18

baby 4 31.78 - - - 33.06 2.4 32.81 16.2 32.99 3.6 33.03 0.85 32.98 0.38
bird 4 30.18 - - - 31.71 0.68 31.51 4.7 31.72 1.1 31.82 0.27 31.98 0.14

butterfly 4 22.10 - - - 23.57 0.50 23.30 3.8 23.38 0.90 23.52 0.24 25.07 0.10
head 4 31.59 - - - 32.21 0.68 32.10 4.5 32.24 1.1 32.27 0.27 32.19 0.13

woman 4 26.46 - - - 27.89 0.66 27.61 4.3 27.72 1.1 27.80 0.28 28.21 0.13

average 4 28.42 - - - 29.69 0.98 29.47 6.71 29.61 1.56 29.69 0.38 30.09 0.18

Table 2. The results of PSNR (dB) and test time (sec) on the Set14 dataset

Set14 [28] Bicubic SC [26] K-SVD [28] NE+NNLS [2] NE+LLE [4] ANR [20] SRCNN
images scale PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

baboon 3 23.21 - 23.47 126.3 23.52 3.6 23.49 29.0 23.55 5.6 23.56 1.1 23.60 0.40
barbara 3 26.25 - 26.39 127.9 26.76 5.5 26.67 47.6 26.74 9.8 26.69 1.7 26.66 0.70
bridge 3 24.40 - 24.82 152.7 25.02 3.3 24.86 30.4 24.98 5.9 25.01 1.1 25.07 0.44

coastguard 3 26.55 - 27.02 35.6 27.15 1.3 27.00 11.6 27.07 2.6 27.08 0.45 27.20 0.17
comic 3 23.12 - 23.90 54.5 23.96 1.2 23.83 11.0 23.98 2.0 24.04 0.42 24.39 0.15
face 3 32.82 - 33.11 20.4 33.53 1.1 33.45 8.3 33.56 1.7 33.62 0.34 33.58 0.13

flowers 3 27.23 - 28.25 76.4 28.43 2.3 28.21 20.2 28.38 4.0 28.49 0.81 28.97 0.30
foreman 3 31.18 - 32.04 25.9 33.19 1.3 32.87 10.8 33.21 2.2 33.23 0.44 33.35 0.17
lenna 3 31.68 - 32.64 68.4 33.00 3.3 32.82 29.3 33.01 6.0 33.08 1.1 33.39 0.44
man 3 27.01 - 27.76 111.2 27.90 3.4 27.72 29.5 27.87 6.1 27.92 1.1 28.18 0.44

monarch 3 29.43 - 30.71 112.1 31.10 4.9 30.76 43.3 30.95 8.8 31.09 1.6 32.39 0.66
pepper 3 32.39 - 33.32 66.3 34.07 3.3 33.56 28.9 33.80 6.6 33.82 1.1 34.35 0.44
ppt3 3 23.71 - 24.98 96.1 25.23 4.0 24.81 36.0 24.94 7.8 25.03 1.4 26.02 0.58
zebra 3 26.63 - 27.95 114.4 28.49 2.9 28.12 26.3 28.31 5.5 28.43 1.0 28.87 0.38

average 3 27.54 - 28.31 84.88 28.67 2.95 28.44 25.87 28.60 5.35 28.65 0.97 29.00 0.39

4.2 Running Time

Figure 4 shows the running time comparisons of several state-of-the-art methods,
along with their restoration performance. All baseline methods are obtained
from the corresponding authors’ MATLAB implementation, whereas ours are in
C++. We profile the running time of all the algorithms using the same machine
(Intel CPU 3.10 GHz and 16 GB memory)7. Our method takes 0.39 sec per
image on average in Set14 (Table 2), whereas other methods are several times
or even orders of magnitude slower. Note the speed gap is not mainly caused
by the different MATLAB/C++ implementations; rather, the other methods
need to solve complex optimization problems on usage (e.g., sparse coding or
embedding), whereas our method is completely feed-forward. We also note that
the processing time of our approach is highly linear to the test image resolution,
since all images go through the same number of convolutions.

7 The running time may be slightly different from that reported in [20] due to different
machines.
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Fig. 4. The proposed SRCNN achieves the state-of-the-art super-resolution qual-
ity, whilst maintains high and competitive speed in comparison to existing external
example-based methods. The chart is based on Set14 results summarized in Table 2.
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f

Fig. 5. The figure shows first-layer filters trained on 91 images with an upscaling factor
2. The filters are organized based on their respective variances.

5 Further Analyses

5.1 Learned Filters for Super-Resolution

Figure 5 shows examples of learned first-layer filters trained on 91 images (24,800
sub-images) by an upscaling factor 2. Please refer to our published implemen-
tation for the patterns of upscaling factors 3 and 4. Interestingly, each learned
filter has its specific functionality. For instance, the filters a and f are like Lapla-
cian/Gaussian filters, the filters b, c, and d are like edge detectors at different
directions, and the filter e is like a texture extractor. We observe some “dead”
filters, whose weights are all nearly zeros, similar to those observed in [27]. Nev-
ertheless, patterns may emerge in some of these dead filters given long enough
training time. We will investigate this phenomenon in future work.

5.2 Learning Super-Resolution from ImageNet

As shown in the literature, deep learning generally benefits from big data train-
ing. In the above experiments, we use a standard training set that consists of 91
images to ensure fair comparison with existing methods. In this section, we show
that our deep model could achieve better performance given a large training set.
We use a total of 395,909 images from the ILSVRC 2013 ImageNet detection
training partition for SRCNN learning. These images are decomposed into over
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5 million sub-images using a stride of 33. We use the same network settings as
the above experiments, i.e. f1 = 9, f3 = 5, n1 = 64 and n2 = 32. The training
time on ImageNet is about the same as on 91 images since the number of back-
propagations is the same. The experiments are tested on Set5 with an upscaling
factor 3. The test convergence curve trained on ImageNet and results of other
methods are shown in Figure 6. As can be observed, with the same number of
backpropagations (i.e., 8 × 108), the SRCNN+ImageNet achieves 32.52 dB,
higher than 32.39 dB yielded by the original SRCNN trained on 91 images (or
24,800 sub-images). The results positively indicate that SRCNN performance
may be further boosted using a larger and more diverse image training set.
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Fig. 6. The test convergence curve trained on ImageNet and results of other methods
on the Set5 dataset

5.3 Filter Number

In comparison to other CNN structures [14], we use a relatively small network
scale to achieve the state-of-the-art performance in super-resolution. In general,
the performance would still improve if we enlarge the network scale, e.g. adding
more layers and filters, at the cost of running time. Here, we evaluate the per-
formance of using different numbers of filters. Specifically, based on our network
default setting of n1 = 64 and n2 = 32, we conduct two additional experiments:
(i) one is with a larger network with n1 = 128 and n2 = 64, and (ii) the other
is with a smaller network with n1 = 32 and n2 = 16. Similar to Section 5.2, we
also train the two models on ImageNet and test on Set5 with an upscaling factor
3. The results are shown in Table 3. It is clear that superior performance could
be achieved using more filters. However, if a fast restoration speed is desired,
a small network scale is preferred, which could still achieve better performance
than the state-of-the-art.

Table 3. The results of using different filter numbers in SRCNN. Training is performed
on ImageNet whilst the evaluation is conducted on the Set5 dataset.

Set5 [2] n1 = 128, n2 = 64 n1 = 64, n2 = 32 n1 = 32, n2 = 16
images PSNR Time PSNR Time PSNR Time

32.60 0.60 32.52 0.18 32.26 0.05
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5.4 Filter Size

In this section, we examine the network sensitivity to different filter sizes. In
previous experiments, we set filter size of the first layer as f1 = 9 and that of
the last layer as f3 = 5. Here, we enlarge the filter size to f1 = 11 and f3 = 7.
All the other settings remain the same with Section 5.2. The results with an
upscaling factor 3 on Set5 are 32.57 dB, which is slightly higher than the 32.52
dB reported in Section 5.2. This suggests that a reasonably larger filter size could
grasp richer structural information, which in turn lead to better results. However,
the deployment speed will also decrease with a larger filter size. Therefore, the
choice of the network scale should always be a trade-off between performance
and speed.

Bicubic / 32.39 dBOriginal / PSNR

ANR / 33.82 dB

K-SVD / 34.07 dB

SRCNN / 34.35 dB

SC / 33.32 dB

NE+NNLS / 33.56 dB NE+LLE / 33.80 dB

Fig. 7. “Pepper” image from Set14 with an upscaling factor 3

Bicubic / 24.04 dBOriginal / PSNR

ANR / 25.90 dB

K-SVD / 25.94 dB

SRCNN / 27.58 dB

SC / 25.58 dB

NE+NNLS / 25.61 dB NE+LLE / 25.75 dB

Fig. 8. “Butterfly” image from Set5 with an upscaling factor 3
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Fig. 9. “Bird” image from Set5 with an upscaling factor 3
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Fig. 10. “Baby” image from Set5 with an upscaling factor 3

6 Conclusion

We have presented a novel deep learning approach for single image super-
resolution (SR). We show that conventional sparse-coding-based image super-
resolution methods can be reformulated into a deep convolutional neural net-
work. The proposed approach, SRCNN, learns an end-to-end mapping between
low- and high-resolution images, with little extra pre/post-processing beyond the
optimization. With a lightweight structure, the SRCNN has achieved superior
performance than the state-of-the-art methods. We conjecture that additional
performance can be further gained by exploring more hidden layers/filters in the
network, and different training strategies. Besides, the proposed structure, with
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its advantages of simplicity and robustness, could be applied to other low-level
vision problems, such as image deblurring or simultaneous SR+denoising. One
could also investigate a network to cope with different upscaling factors.
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